Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus.

نویسندگان

  • Elizabeth A Shank
  • Vanja Klepac-Ceraj
  • Leonardo Collado-Torres
  • Gordon E Powers
  • Richard Losick
  • Roberto Kolter
چکیده

Many different systems of bacterial interactions have been described. However, relatively few studies have explored how interactions between different microorganisms might influence bacterial development. To explore such interspecies interactions, we focused on Bacillus subtilis, which characteristically develops into matrix-producing cannibals before entering sporulation. We investigated whether organisms from the natural environment of B. subtilis--the soil--were able to alter the development of B. subtilis. To test this possibility, we developed a coculture microcolony screen in which we used fluorescent reporters to identify soil bacteria able to induce matrix production in B. subtilis. Most of the bacteria that influence matrix production in B. subtilis are members of the genus Bacillus, suggesting that such interactions may be predominantly with close relatives. The interactions we observed were mediated via two different mechanisms. One resulted in increased expression of matrix genes via the activation of a sensor histidine kinase, KinD. The second was kinase independent and conceivably functions by altering the relative subpopulations of B. subtilis cell types by preferentially killing noncannibals. These two mechanisms were grouped according to the inducing strain's relatedness to B. subtilis. Our results suggest that bacteria preferentially alter their development in response to secreted molecules from closely related bacteria and do so using mechanisms that depend on the phylogenetic relatedness of the interacting bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms

Background: Biosurfactants are compounds that are produced by different microorganisms and have an emulsifying property. This study aimed to investigate extractive biosurfactant from bacillus subtilis (PTCC1720) against the biofilms of Staphylococcus aureus (PTCC 1112), Staphylococcus saprophyticus (PTCC 1440) and Staphylococcus epidermidis (PTCC 1435). Materials and Methods: This study was con...

متن کامل

Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.

UNLABELLED Interspecies interactions have been described for numerous bacterial systems, leading to the identification of chemical compounds that impact bacterial physiology and differentiation for processes such as biofilm formation. Here, we identified soil microbes that inhibit biofilm formation and sporulation in the common soil bacterium Bacillus subtilis. We did so by creating a reporter ...

متن کامل

Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms.

Microbial biofilms are tightly packed, heterogeneous structures that serve as arenas for social interactions. Studies on Gram negative models reveal that during evolution in structured environments like biofilms, isogenic populations commonly diversify into phenotypically and genetically distinct variants. These variants can settle in alternative biofilm niches and develop new types of interact...

متن کامل

Carbohydrate coating reduces adhesion of biofilm-forming Bacillus subtilis to gold surfaces.

The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion--the first step in colonization and biofilm formation--is therefore very important. Current research com...

متن کامل

Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 48  شماره 

صفحات  -

تاریخ انتشار 2011